Amonra Technology S.R.L.

Empresa de Energias Renovables. Solar, Eolica, Biomasa.


Deja un comentario

Beneficios de invertir en un Termotanque solar Termosifonico vs un Termotanque eléctrico

El calentamiento de agua sanitaria es fundamental para el uso diario de una vivienda, oficina, empresa, etc.

Una de las opciones que se tienen para tener el calentamiento de agua sanitaria puede ser a travez de un termotanque electrico.

Los termotanques eléctricos funcionan con resistencia electrica en general, por lo que los consumos electricos son muy altos y esto incrementa notablemente la factura de luz a pagar mensualmente.

Poniendo en contexto lo mencionado, para tener una idea, un termotanque electrico de consume alrededor de 2500 a 3000w, y el gasto de luz va a depender adicionalmente de la temperatura de entrada y de salida del agua así como del volumen de agua utilizado y las horas de conexión del mismo.  Lo mencionado son factores a tener en cuenta al momento de hacer una inversion.

Todo lo dicho se resumen en un desembolso de un monto de dinero mensual que se ve afectado notablemente por:

  • Las necesidades de consumo del agua caliente sanitaria
  • Las condiciones economicas del país, donde los precios suben notablemente por causa de la inflación o de otros aspectos de la economía que no están en discusión.

Sin embargo, al utilizar un sistema de calentamiento de agua solar, los resultados son totalmente diferentes:

1.- La inversión inicial es muy cercana a la compra de un termotanque electrico.

2.- Los gastos de mantenimiento son casi nulos, y no se debe pagar una cuota mensual por el uso de estos, ya que serian una inversión a largo plazo.

3.- La vida util de estos equipos solares es de mas de 20 anos.

4.- En Argentina  se puede remplazar el termotanque electrico en un 80%. esto por las condiciones extremas de invierno donde fundamentalmente por variaciones de la radiación solar disminuyen la eficiencia de calentamiento del termotanque solar.

5.- Puede usar sistemas alternativos como por ejemplo: acumulacion de agua caliente durante el dia, sistemas auxiliares secundarios como resistencias eléctricas o termotanques eléctrico, que apoyaran en el salto térmico al calentamiento de agua para que salga según los requerimientos del consumidor lo cual seria durante el 20% restante que el termotanque solar no tenga eficiencia.

Al momento de invertir en un sistema para calentamiento de agua sanitaria, valdría analizar los siguientes aspectos:

  1. Inversión inicial
  2. Pago mensual
  3. Gastos de mantenimiento
  4. Ahorro energético y cuidado al medio ambiente

Al Analizar y comparar los gastos de dinero mensual con los diferentes sistemas es muy seguro que terminara por orientarse a un termotanque solar porque en todos los aspectos este sistema aun cuando es relativamente nuevo y hay mucho desconocimiento,  lleva la batuta en los beneficios prestados.

Recuerde, obtenga asesoría de personal calificado, use equipos de alta calidad y alta eficiencia, la instalación del mismo es fundamental para el buen funcionamiento y los buenos resultados.

El objetivo del articulo es que ayude a nuestros lectores a comprender y reforzar los beneficios de usar un sistema solar de agua caliente sanitaria respecto a los sistemas de calentamiento convencionales como son los termotanques eléctricos. Busca un buen proyectista y alguien que te respalde en el camino de la transformación.

Contactanos @amonratech, o por nuestra pagina web www.amonratechnology.com, Teléfono 2995818067, siguenos en Tw, FB, YouTube, Estamos en Neuquen, Zapala, ChosMalal, Mendoza, Consulte.

 

Anuncios


Deja un comentario

Promedio de Radiación Solar Anual en Neuquen y su influencia en el dimensionamiento en sistemas solares fotovoltaicos.

 

La radiación solar es uno de los principales factores que influyen en la efectividad del uso de los sistemas renovables. Dependiendo de donde se estén tomando las mediciones la radiación solar puede ser más alta o más bajo el valor, esto porque no es lo mismo, tomar una radiación en la atmósfera a tomarla en tierra.

Si se dimensiona con la primera corres el riesgo de dimensionar menor cantidad de equipo que el que necesitas para cubrir tus necesidades, lo ideal y recomendado por Amonra Technology, es dimensionar con datos tomados en tierra que se acercan más a la realidad y poder llegar más cercanos a cubrir las necesidades que se tienen en cuanto a los equipos a utilizar.

Por muchos motivos es fundamental trabajar los diseños con valores lo más aproximados posibles a lo real, ya que dependiendo de esto puedes o sobre diseñar tu sistema solar y encarecer el beneficio costo del equipo o en el peor de los casos puedes diseñar corto y no alcanzar a cubrir las necesidades de la instalación.

Es importante resaltar que la radiación solar varia de un punto a otro, por lo que es fundamental contar con softwares especializados que con base en una información confiable puedan evaluar todas las opciones que interfieren en la propuesta y definir el equipamiento que se necesita.

Argentina es un país muy diverso en cuanto a la incidencia solar, ya que dependiendo de las estaciones del ano podrías tener incidencias muy altas como por ejemplo 7.94 Kwh/m¨2/día en época de Verano o bajar a 1,86 Kwh/m¨2/día en invierno, y esto teniendo en cuenta que si puntualizas en ciertas ciudades o provincias podría ser mucho más alto o más bajo el valor de la radiación solar.

Todo esto hace muy diferente diseñar un sistema fotovoltaico para una época o para otra, o para el total del ano, o para una provincia o para una ciudad específica, por ejemplo no es lo mismo diseñar usando la radiación solar para todo Argentina que para Neuquen Provincia, o para Neuquen Capital, estamos 100% seguros que los resultados serán muy diferentes y habrá diferencia total en la cantidad de equipos, aun y cuando se mantengan el resto de variables igual.

En resumen, si se evalúan cada una de estas alternativas independientemente se podrían obtener los siguientes aspectos relevantes:

  • Propuesta para todo el ano vs propuesta solo para invierno: en este caso, al diseñar para todo el ano tendrás que involucrar aproximadamente 60-70% más de equipo que si solo diseñas para Verano (tomando estos dos extremos por ser los picos más altos y bajos de incidencia solar durante el año en Argentina). Esto significa que como mínimo de la instalación quedara sin uso durante todo el año un 50%. Lo cual da entra perfecta a las instalaciones On-grid. donde un 100% se ocupa en invierno y en verano el 70% puede ser inyectada a la red por falta de uso.
  • Si se diseña para Verano usando la radiación solar de un lugar diferente a donde se va a hacer la instalación y no la de la zona específica donde se realizara, podrías estar sobre diseñando o quedando corto en la cantidad de equipos para suplir las necesidades. Igual en el caso de diseñar para invierno.

Estas dos alternativas resumen los párrafos mencionados en ambos sentidos, esto debido a que la radiación solar es variable de un lugar a otro y se puede caer en errores de dimensionamiento por no usar la información apropiada.

A continuación se presenta un resumen obtenido de información de las estadísticas de la página de la Nasa, donde hemos promediado 22 años de registro de la radiación solar en Neuquen y con el fin de complementar gráficamente lo mencionado anteriormente, adicional se puede ver las tendencia a tarvez de las estaciones del ano de la misma. Fuente: https://eosweb.larc.nasa.gov/sse/RETScreen/

Después de haber visto como incide la radiación solar en el dimensionamiento de sistemas fotovoltaicos, es importantes que se recuerde:

1.- Trabajar con la radiación solar de la zona donde se hará la instalación del sistema Fotovoltaico. Esto forma parte del éxito del dimensionamiento.

2.- Asesórate completamente y despeja dudas antes de comprar la instalación.

3.- No sobre dimensiones tu instalación a más de un 10%, si tu proyecto está realizado con detalle no deberías tener problema.

4.- Usar energía solar fotovoltaica es una garantía de que nunca te quedaras sin electricidad siempre que esté bien dimensionado.

Esperamos que este articulo te ayude a comprender la incidencia de la radiación solar, y porque las instalaciones son diferentes y deben diseñarse a medida. El éxito de una instacion empieza por un buen dimensionamiento, y hay para todas las necesidades. Busca un buen proyectista y alguien que te respalde en el camino de la transformación.

Contactanos @amonratech, o por nuestra pagina web www.amonratechnology.com, Telefono 4451662, siguenos en Tw, FB, You tube,

 

 


Deja un comentario

Uso y aplicación de los reguladores de carga en Instalaciones Fotovoltaicas.

Como todos sabemos los paneles Fotovoltaicos han sido diseñados para producir una tensión de salida algunos voltios superiores a la que necesita una batería para cargarse. Con esto se garantiza que el panel siempre estará en condiciones de cargar la batería, incluso cuando la temperatura de la célula sea alta, y se produzca una disminución del voltaje generado.

El inconveniente de esta sobre tensión es doble. Por una parte se desperdicia un poco la energía máxima teórica obtenida del panel (aprox, 10%), que se conseguirán a tensiones mayores que los que impone la baterías, por otra parte ocurrirá que aunque esta llegue a su estado de plena carga no alcanzara el potencial máximo que el panel teóricamente puede lograr, y este seguirá intentando inyectar energía a través de los bornes de la batería, produciendo una sobre carga perjudicial para la misma.

El regulador de carga como su nombre lo indica también se le denomina controlador de carga ya que regula la corriente que absorbe la batería pero a su vez controla la corriente que entrega, evitando de esta manera lo que todos conocemos como sobre carga y sobre descarga.

Con esto se cuida la vida útil de las baterías, ya que son de los equipos más costosos en una instalación solar fotovoltaica.

Existen en el mercado paneles solares auto regulables, los cuales al ser usados no se necesita usar el regulador-controlar de carga porque el panel tiene las prestaciones de un regulador incluidas con ciertas limitaciones (de este tipo de autoregulamiento hablaremos en otros blog que estaremos subiendo próximamente).

Otro caso donde no se requiere reguladores de carga es en instalaciones donde la relación entre la potencia de los paneles y la capacidad de las baterías, es muy pequeña por ejemplo de baterías sobredimensionadas por razones de seguridad u otros motivos, en este caso la corriente de carga difícilmente podrá llegar a producir danos en las baterías.

Un tercer caso puede ser donde la autonomía del sistema es superior a los 20 días, es casi seguro que las baterías son los suficientemente grandes para absorber la intensidad de corriente producida por los paneles, aun en estado de plena carga durante bastante tiempo antes de que comiencen a presentarse problemas de gasificación.

Espero que esta información haya sido de tu interés para que determines lo equipos a utilizar en tu instalación renovable. Nos veremos en nuestra próxima edición.

Recuerda, mientras mas cuidado prestes al diseno optimo para tu sistema fotovoltaico, mayor dinero ahorraras y mas efectiva sera tu inversión.

Asesórate antes de comprar, esta es la primera clave del éxito en el uso de energías renovables. @amonratech


Deja un comentario

Consideraciones para definir cual termotanque solar usar.

Uno de los principales problemas actuales en Argentina y algunos otros países de Latino America y del mundo, se centra en el uso de sistemas específicos para calentamiento de agua sanitaria, no alternativos (uso común) como son los dependientes de la luz eléctrica o del gas, generalizando la situacion.

En el caso de uso de termotanques eléctricos (el precio es accesible casi igual que un termo tanque solar), el problema se centra en el pago de la factura de luz, lo cual en muchos casos es muy elevada e impagable.

En el caso del uso de gas, en muchas ocasiones hay zonas donde no es accesible el gas, por carecer de redes de distribución del gas, o en algunos casos se calienta el agua con la quema de madera, lo cual no siempre es accesible.

Una opción valida, viable, económica y ambientalmente amigable es usar termotanque solares. Nuestros termotanques Marca Amonra Technology, son de dos clase:

A.- Termotanques atmosféricos o también llamados termosifonicos: El agua fria entra por el tanque auxiliar de la parte superior al tanque de almacenamiento y de ahi pasa a los tubos de vidrio absorvedores de la radiacion solar, allí se calienta el agua, y por diferencia de densidades el agua caliente sube y el agua fría baja para. El agua caliente que sube se queda almacenado en el tanque para su uso continuo. Este procedimiento se repite siempre que haya diferencias de temperatura y absorción de la radiación solar y es el procedimiento para calentamiento de agua en estos tipos de tanques.

B.- Termotanques presurizados o Heat Pipe: estos termotanques reciben el agua por la parte superior del tanque de almacenamiento y allí se queda almacenada, dentro de este tanque el agua caliente sube y el agua fría se queda en la parte baja del tanques, y así sucesivamente se repite el proceso. Una particularidad de estos sistemas es que el agua no pasa a los tubos de vacío, estos tubos de vacío tienen una aleta de aluminio que es la que absorbe el calor y los transmite a agua que se encuentra en el tanque de almacenamiento. Otro punto importante es que estos tubos de vacío se encuentran llenos de anticongelante, con el fin de que a bajas temperaturas no sufra problemas de congelamiento, a través del anticongelante se transfiere el calor a la aleta y de la aleta al agua almacenada. Este procedimiento se repite siempre que se tenga radiación solar.

Dentro de las consideraciones de estos tanques se encuentran: la presión diferencia o de trabajo y las temperaturas de trabajo del sistema.

En el caso del termo tanque atmosférico, la presión máxima de trabajo es de 0,6 bar, y las temperaturas de trabajo son desde 0c, hasta 75c, no aplicaría en zonas donde la temperatura ambiente sea menor de 0C por mas de 12 hrs, y en el caso de los Presurizados o heat pipe, la presión de trabajo es de 6 bar y la temperatura ambiente no es limitante.

Otro factor importante para definir el termo tanque a usar aparte de lo mencionado anteriormente es el volumen, se calcula 40-50 lts por persona habitante de lugar, y en base a esto se define el volumen.

Ya con esta información estas listo para definir cual termo tanque usar y comienza a ahorrar dinero cuidando el medio ambiente.

Hay puntos importantes que apoyaran la compra de tus equipos, primero compra marcas garantizadas, segundo compra marcas con soporte técnico, así cuando tengas algún problema tendrás con quien apoyarte. Este también es uno los principales problemas presentes en el mercado, consigues el equipo pero estas mal asesorado y en el 90% de los casos se garantiza una falla segura, el producto es bueno solo que mal Utilizado.

Recuerda #seamosactoresnoespectadores, #cuidemoselmedioambiente.

 


2 comentarios

Panel de Placa Plana (calefacción – calentamiento de agua)

Colector Solar Térmico de Placa Plana  

Los colectores de placa plana son los más usados para calentar agua en los hogares y para los sistemas de calefacción. Un colector de placa plana se compone básicamente de una caja metálica con aislamiento con una cubierta de vidrio o de plástico (la ventana) y de una placa absorbedora de color oscuro. La radiación solar es absorbida por la placa que está construida de un material que transfiere rápidamente el calor a un fluido que circula a través de tubos en el colector.

Este tipo de colectores, calientan el fluido que circula a una temperatura considerablemente inferior a la del punto de ebullición del agua y son los más adecuados para aplicaciones donde la demanda de temperatura es de 30-70 °C. Son los más utilizados para calentar agua en sistemas domésticos y comerciales y en piscinas cubiertas.

  • Partes

1-Cubierta Transparente: Permite aprovechar más energía mediante el conocido efecto invernadero. Impide que la radiación infrarroja emitida por el absorbedor se pierda, posibilitando que la misma vuelva a la placa absorbedora y sea aprovechada. Proporciona la estanquidad necesaria para evitar la entrada de agua o aire. Se debe prestar especial atención a su resistencia mecánica, pues debe soportar la fuerza del viento o la presión de la nieve acumulada. Los materiales más empleados son el vidrio – La transmisión energética debe ser elevada y depende del espesor, del ángulo de incidencia y del tipo de vidrio. Suelen ser recocidos o templados, lo que mejora sus propiedades mecánicas sin empeorar la óptica. Deben soportar las posibles presiones externas, así como las dilataciones o enfriamientos rápidos (debido a tormentas). Plástico – Presentan propiedades ópticas similares al vidrio, facilitando también el efecto invernadero. Pesan poco y son poco frágiles, además tienen baja conductividad térmica. Como inconvenientes está el posible abombamiento al dilatarse y que son inestables a la luz ultravioleta reduciéndose con el tiempo su transmisión energética. Doble vidrio – Aumentan el efecto invernadero y reducen las pérdidas por convección. Aumentan la temperatura de la placa absorbedora y la del fluido caloportador. Sin embargo, son elevados en precio y las pérdidas ópticas con lo que serán de aplicación exclusiva en condiciones ambientales frías.

2-Aislamiento Posterior: Se emplea para reducir las pérdidas térmicas en la parte trasera del absorbedor que debe ser de baja conductividad térmica. Los materiales pueden ser lana de vidrio, lana de roca, corcho, poliestireno o poliuretano. Se suele incluir una lámina reflectante (aluminio) tras la placa absorbedora que refleja la radiación posterior reenviándola a la placa.

3-Carcasa: Protege y soporta los elementos de colector, permitiendo además anclar y sujetar el colector al edificio. Debe resistir los cambios de temperatura (dilataciones) sin perder la estanquidad. Debe resistir la corrosión. Se hacen colectores completamente estancos al aire, si bien pueden realizarse estancos al agua pero no al aire (orificios en la parte baja).

  • Características

Información Técnica.

1.Colector:
1.1  Cubierta: Bajo nivel de hierro, vidrio templado extra claro Mistlite.
1.2 Espesor de la cubierta: 3.2mm
1.3 Diámetro de la tubería:
1.3.1 Tubo Colector: Φ 22mm (Espesor: 0,8mm)
1.3.2 Tubo de Subida: Φ 10mm (Espesor: 0,7mm)
1.4 Núm. De tubos de subida: 8
1.5 Distancia entre tuberías: 110mm
1.6    Liquido de transferencia de calor: Agua o liquido anticongelante (agua-glicol)
2. Absorción (Bluetech):
2.1 Superficie: recubrimiento Eta plus
2.2 Espesor: 1.12mm -0.4mm
2.3 Luminosidad del absorbedor: 5%2%(Eta plus)
2.4 Absorción de Amortiguadores: 95%2%(Eta plus)
2.5 Conexión entre las tuberías y absorbente: Soldadura por laser.
3. Marco:
3.1 Material de marco: Perfil de aluminio anodizado
3.2 Aislamiento y espesor:
3.2.1 Lana de Roca, densidad: 50Kg/m3
3.2.2 20mm debajo del absorbedor & 20mm alrededor de las paredes
3.3    Material de placa: Chapa de acero galvanizado, Espesor: 0.4mm
4. Data de eficiencia:
4.1 η0=0.74
4.2 a1 (W/m2K) = 4.5
5.  Otra Información
·         Máxima temperatura de operación: 200°C
·         Máxima presión de operación: 9 bar
·         Resistencia al granizo: 25mm

  • Aplicaciones

Los aplicaciones para estos sistemas son varias, pero podemos considerar algunas más importantes como:

  • Como sistema complementario en el hogar para calentamiento de Agua Sanitaria.
  • Calentamiento de aguas de piscinas.
  • Loza Radiante.
  • Para calefacción.
  • Precalentamiento de agua para usos industriales.

Se debe ser muy claro en que estos sistemas no pretenden reemplazan los métodos tradicionales sino integrarse a ellos, para lograr un ahorro de las energías no renovables y generar así un beneficio ecológico y económico para el usuario.


Deja un comentario

Cargadores Solares

 

Los cargadores solares son dispositivos que mediante su placa solar capta la radiación solar para su aprovechamiento. En el caso de los cargadores solares recargan su batería interna, para posteriormente alimentar otros dispositivos eléctricos como: -Celulares, -Cámaras Digitales, -Gps,-MP4, hasta incluso dependiendo de la potencia del mismo Laptops, y artefactos de mayor potencia, además todos los cargadores solares pueden ser recargados mediante la corriente eléctrica.

  • Descripción

Los cargadores solares portátiles (dependiendo del modelo) podemos encontrarlos fabricados en materiales como ABS (acrilonitrilo/plástico + caucho), Outshell con cubierta de aluminio etc. Cada uno cuenta con su cable micro USB y diferentes adaptadores para distintos dispositivos electrónicos. También los encontraremos con diferentes gamas de colores dependiendo del modelo para los diferentes gustos.

Los paneles fotovoltaicos: están formados por numerosas celdas que convierten la luz en electricidad. Las celdas a veces son llamadas células fotovoltaicas. Estas celdas dependen del efecto fotovoltaico por el que la energía lumínica produce cargas positiva y negativa en dos semiconductores próximos de diferente tipo, produciendo así un campo eléctrico capaz de generar una corriente.

  • Partes

Los componentes esenciales para el funcionamiento de los Cargadores Solares son tres:

  1. Las placas solares, se encargan de transformar la luz solar en electricidad, de ellas depende la eficiencia energética del dispositivo.
  2. Las baterías (la mayoría de polímero de litio), sirven para almacenar la energía eléctrica producida por las placas solares, según el tipo que lleve instalado el cargador podrá ofrecer voltajes y amperes diferentes.
  3. Circuitos eléctricos, unen la placa solar con la batería, sirven como un control para el funcionamiento del resto de componentes. También proveen la salida de la carga eléctrica de las baterías hacia otro dispositivo a través de diferentes conectores.

Dependiendo del modelo de nuestro cargador solar portátil podemos encontrar otras partes anexadas al producto como:

  • Mosquetón (para enganchar nuestro cargador solar a mochilas, bolsos, etc.)
  • Adaptador de corriente.
  • Cable USB con distintos adaptadores.

 

 

 

 

  • Características de algunos modelos
Código AT-CS12000C
 Cargador Solar

 

Capacidad: 12000mAh
Panel Solar: Silicio monocristalino 1.7W
Tamaño: 167*89*18mm
Peso Neto: 307g
Salida/Entrada: 5V /2X1A
Partes: Cable micro USB / Mosquetón
Tipo de Batería: Polímero de litio
Material: ABS (Acrilonitrilo/plástico) + Caucho
Especificación: Impermeable y resistente a golpes /Doble salida USB – de entrada: 5V-2A
Uso: Teléfonos móviles, Iphone, cámaras digitales, MP3, MP4, GPS, etc.
Colores: Negro/Naranja/Camuflado

 

 

 

 

Código AT-CS23000
 Cargador Solar
Capacidad: 23000mAh
Panel Solar: Silicio monocristalino 16V/2.5w
Tamaño: 222*126*21mm
Peso Neto: 1310g
Salida/Entrada: DC 12V/3A, 16V/3A, 19V/3A; 5V/1.2A – CC 12V, 1.2A
Partes: Adaptador corriente DC + 1 Cable de USB – Cable+8 adapta. Para portátiles.
Tipo de Batería: Polímero de litio
Uso: Teléfonos móviles, Iphone, laptops, cámaras digitales, MP3/MP4
Colores: Negro+Naranja
Código AT-CS-609
 Cargador Solar
Capacidad: 3500 mAh
Panel Solar: Silicio monocristalino
Tamaño: 138*67*8mm
Peso Neto: 225g
Salida/Entrada: 5V 1A / 5V 1A
Accesorios Con adaptadores
Tipo de Batería: Polímero de litio
Material: Outshell / ABS con cuero
Vida circulo > 500 veces / Cargada con electricidad: 2-3 horas.
Uso: Cargador portátil para Iphone 6 / protector de celular.
Colores: Negro

 

 

 

 

 

 

 

 

 

 

 

 

 


Deja un comentario

Situación Internacional Actual de los Biocombustibles de Segunda Generación.

Una de las preguntas que muchos expertos y no expertos en energias renovables nos hacemos cada día es cual es la situación internacional en cuanto a la producción de biocombustible en el caso de los de segunda generación?.

Hablando de los Biocombustibles de Segunda Generación, se considera necesario la definición de los mismos, por lo que primeramente pasaremos a responder la pregunta ¿Qué son los Biocombustibles de Segunda Generación?

  • Son combustibles producidos a partir de materias primas que no son fuentes alimenticias, para lo cual se utilizan tecnologías que todavía están en etapas de investigación y desarrollo y con costos de producción aún muy elevados. Los combustibles de segunda generación serán una alternativa muy efectiva para reemplazar a los combustibles fósiles sin utilizar cultivos alimenticios. Ayudarán a combatir un problema que nos incumbe y preocupa a todos, como es el calentamiento global.

Por ejemplo: El etanol se puede producir a partir de celulosa. El proceso consiste en convertir la celulosa, que puede provenir de pastos perennes, restos de cosechas, tallos de maíz, bagazo de caña, árboles de rápido crecimiento, residuos orgánicos municipales y de casi cualquier otro material orgánico, en azúcares, para lo cual se utilizan enzimas de alta tecnología y se fermentan los azúcares, de lo cual resulta el etanol.

Por otra parte, se puede producir biodiesel a partir de algas con un alto contenido de lípidos (aceites), para lo cual existen especies y tecnologías apropiadas. El aceite extraído de las algas se puede transformar en biodiesel, mediante el proceso de transesterificación. Se estima que con las tecnologías actuales de una hectárea de algas anualmente se pueden obtener más de 20 000 litros de biocombustible, rendimiento que seguirá mejorando conforme se perfeccionen las tecnologías. Las algas requieren agua, luz y CO2, que puede ser obtenido de las chimeneas utilizadas en procesos industriales, lo que reduciría en forma significativa uno de los principales gases causantes del efecto invernadero. De las algas también se pueden obtener almidones, los cuales pueden convertirse en etanol. Algunas algas poseen un gran valor nutricional como fertilizante para cultivos y cumplen con las normas de agricultura orgánica que se han establecido

En cuanto a la situacion internacional en la produccion de Biocombustibles de segunda podemos anexar varioa aspectos relevantes.

En Los países desarrollados se concentra la mayor parte de la demanda mundial del consumo de combustibles del sector de transportes, siendo también grandes exportadores de productos agrícolas. Entre los 10 mayores países exportadores de productos agrícolas, en términos de valor, apenas uno es un país en desarrollo que es Brasil.

El continente latinoamericano se presenta en nivel internacional como una región que tiene una clara vocación hacia las exportaciones agrícolas. En el contexto de una creciente difusión internacional del uso de biomasa en el sector transportes, el continente latinoamericano se antepone como un potencial exportador de biocombustibles. Eso porque mucho de los países industrializados ya son importadores netos de materias primas agrícolas.

El mercado internacional de biocombustibles todavía es bastante limitado. Gran parte de la producción mundial se dirige hacia el mercado interno. Sin embargo la producción de bioetanol está mucho más adelantada que la de biodiesel, así como su comercio internacional. Siendo el comercio internacional del bioetanol el de mayor trasncendencia en la actualidad el cual se ha desarrollado bastante en función de la expansión de su demanda en el mercado internaciona. Esa demanda está siendo impulsada por las políticas nacionales de inducción de mezcla del etanol con la gasolina.

En 2006 el comercio internacional de bioetanol llegó a la marca de 7.814 millones de litros, siendo los principales importadores Estados Unidos, Japon, Alemania, Holanda, el Salvador, Reino Unido, Suecia, Corea del Sur, Belgica, Jamaica. Los flujos comerciales internacionales han logrado crecer muy rápidamente a pesar del gran proteccionismo que existe. Las exportaciones ya eran más del 15% para el 2006, esto de la oferta internacional de bioetanol. Lo cual muestra que está ocurriendo una rápida expansión de ese comercio, viralizandose para la Latino America de la misma forma.

El principal factor que ha contribuido a la consolidación del mercado de bioetanol fue la implementación por Estados Unidos de medidas que prohibieran la adición del MTBE en la gasolina. Pasando el El etanol a ser usado en el lugar de ese aditivo. Sin embargo, la oferta interna de etanol a partir del maíz no logró cubrir todas las necesidades de consumo del mercado americano. La demanda interna alcanzó 20.837 millones de litros en 2006 mientras que la producción, mismo siendo la más alta del mundo, fue de 18.813 millones de litros (RFA, 2007). Mencionados en parrafos anteriores los 10 principales importadores de bioetanol.

Los países de América Central y del Caribe como El Salvador, Jamaica y Costa Rica se benefician ya que han podido accede al mercado norte americano sin tener que pagar impuestos, tornandose importadores del etanol proveniente de Brasil que es deshidratado y enseguida reexportado hacia Estados Unidos sin impuestos. Ha sido una manera para que las exportaciones brasileñas, que son casi la mitad del total mundial, tengan acceso al mercado de ese país norteamericano que es el mayor del mundo.

Brasil ha sido responsable por casi la mitad de las exportaciones mundiales de etanol Apoyando su produccion casi exclusivamente sobre la caña de azúcar. Ese país domina tanto al mercado mundial del azúcar y como del etanol.

El segundo exportador mundial de bioetanol en 2006 era China. Sorprende esa posición de China ya que es un importador líquido de alimentos. La producción de ese país que se apoya en cereales y leguminosas y creció muy aceleradamente en 2006 en función de los altos precios internacionales. Sin embargo las autoridades de China han tomado para reducir esas exportaciones cobrando un impuesto a la exportación.

Los países del Caribe y América Central como El Salvador, Jamaica y Costa Rica reexportan en gran medida la producción de etanol Brasil. Los demás países pertenecen a la Comunidad Europea y exportan sus excedentes regionalmente.

Los principales exportadores de etanol en los ultimos anos han sido Brasil, China, El Salvador, Francia, Africa del Sur, Jamaica, Estados Unidos, Espana, Alemania, y Costa Rica, en diferentes posiciones y menciones pero dentro del grupo.

América Latina es una región con clara vocación para la exportación de productos agrícolas. Tanto los pequeños, medianos y grandes países tienen en los productos agrícolas importantes rubros para sus exportaciones de bienes. Esa vocación para la exportación de productos agrícolas no significa que esos países sean autosuficientes en esos bienes.

Dentro de América Latina, existen dos países que demuestran capacidad significativa de expansión de la oferta al mismo tiempo que ya disponen de un excedente agrícola considerable, que son Argentina y Brasil y pueden unirse en menores proporciones, Colombia, Ecuador, Peru y Chile.

Existan distintas materias-primas vegetales a partir de las cuales se pueda obtener el bioetanol siendo la caña de azúcar la más atrayente para la región y muy probablemente para el mundo. La caña es plantada en toda la región.

Brasil es responsable por 68,2% de la producción de caña en América Latina, el resto de los paises tienen una poca capacidad de expansion de la oferta, recientemente estan comenzando a promover programas de expansion del Mercado domestic del bioetanol. Siendo esta una de las principales razones por el cual en la mayoría de los países productores de caña del continente el etanol solo tiene significado siendo destinado al mercado interno.

Los 6 principales productores de cana de azucar en Latino America y el Caribe son: Brasil, Mexico, Colombia, Cuba, Argentina, Guatemala.

La situación del biodiesel es muy distinta de la del #etanol. La producción de biodiesel es muy inferior en orden de magnitud a la del otro biocombustible. En términos volumétricos esa producción era al rededor de 9 veces menor en volumen que la de bioetanol, la distribución geográfica también es muy distinta, estando muy concentrada.

El país con mayor capacidad de producción de biodiesel de la UE es España con 4,9 millones de toneladas en 2013, un 17% más que en 2012 (4,2). Le siguen Alemania, Francia, Italia y Holanda. Estos cinco países concentran el 70% de la capacidad de producción de biodiesel de la UE-28. (Infinita 2015).

En 2005 la producción mundial de biodiesel llego a un 80, sin embargo en el Informe Infinita 2015, revela que la produccion europea de Biodiesel mantienen la senda ascendente iniciada en el 2013, estancandose el consumo observando un descenso considerablemente en Espana (un 57% en 2013, respecto al 2012), aun asi Espana sigue siendo el pais europeo con capacidad de produccion, (4,9MM de toneladas 2013, y el 4to en produccion (580M toneladas en 2013), situadose a su vez como uno de los paises europeos con menores consumes relativos de Biocombustibles, mientras que paises como Francia y el Reino Unido incrmentaron sus consumos, Espana consume 816.461 toneladas (57% menos que en el 2012), como consecuencia de la reducción por parte del gobierno del objetivo de uso de biocombustibles en gasoleo del 7 al 4,1% este consumo deberia multiplicarse por 3 en Espana para cumplir el objetivo europeo de que las renovables satisfagan el 20% de la demanda energetica española en 2020.

La producción mundial de biodiesel en 2013 fue de 27,06 millones de toneladas y se estima que en 2014 sea de 29,12 millones, lo que se traduce en un incremento del 7,6%.

Con respecto a 2008, la producción mundial se ha incrementado en un 65% mostrando un crecimiento mas lento apartir de alli, Estados Unidos sigue siendo el principal productor mundial de biodiesel con 4,53 millones de toneladas en 2013. Le siguen en el ranking Indonesia, Brasil, Alemania y Argentina. Los mismos que vienen en la escala productiva desde sus inicio en diferentes niveles de producción.

Para poder generar un cambio debemos estar informados, y conocer la trascendencia de lo que deseamos cambiar, recuerda #seamosactoresnoespectadores, #cuidemoselmedioambiente, el uso de los #biocombustibles colabora con la disminución de la #contaminacion y de las #emisiones de CO2.

 

Materiales consultados:

1.- Analisis de legislacion sobre biocombustibles. Octubre 2007.

2.- Chile Producirá Biocombustibles. En: “http://www. lanacion.cl/prontus_noticias/site/artic/20060822/ pags/20060822183129.html”; consultado en mayo 15/ 2010.

3.- BIBlIOTECA DEl CONgRESO NACIONAl DE CHIlE. Biocombustibles ¿Una alternativa real? En: http://www.bcn.cl/carpeta_temas/temas _portada.2007- 01- 26.2084740943. Consultado en Junio 11/2010.

4.- BRAVO, Elizabeth. Encendiendo el debate sobre biocombustibles: cultivos energéticos y soberanía ali- mentaria en América Latina. Ediciones le monde diplomatique. Buenos Aires. 2007

5.- COMISIÓN NACIONAl DE ENERgíA. Estudio marco Normativo y Procedimientos – Consumo de Biocombustibles en Chile. Serie de estudios energéti- cos/06. Chile. 2009. p. 13.

6.- Hernández y Hernández, 2008, p.17.

7.- http://www.infinita.eu/noticia.php?id=92

8.- http://www.cne.gob.sv/index.php?view=items&cid=4%3Afaq-biocombustibles&id=11%3A-ique-son-los-biocombustibles-de-segunda-generacion&option=com_quickfaq&Itemid=181

9.- http://www.infoleg.gob.ar/infolegInternet/verVinculos.do;jsessionid=2807D8F9A67F8CF5E1156C0CA6FB57B4?modo=2&id=136339